AC 自动机
我知道,很多人在第一次看到这个东西的时侯是非常兴奋的。(别问我为什么知道)不过这个自动机啊它叫作 Automaton
,不是 Automation
,让萌新失望啦。切入正题。似乎在初学自动机相关的内容时,许多人难以建立对自动机的初步印象,尤其是在自学的时侯。而这篇文章就是为你们打造的。笔者在自学 AC 自动机后花费两天时间制作若干的 gif,呈现出一个相对直观的自动机形态。尽管这个图似乎不太可读,但这绝对是在作者自学的时侯,画得最认真的 gif 了。另外有些小伙伴问这个 gif 拿什么画的。笔者用 Windows 画图软件制作。
概述¶
AC 自动机是 以 Trie 的结构为基础,结合 KMP 的思想 建立的。
简单来说,建立一个 AC 自动机有两个步骤:
- 基础的 Trie 结构:将所有的模式串构成一棵 Trie。
- KMP 的思想:对 Trie 树上所有的结点构造失配指针。
然后就可以利用它进行多模式匹配了。
字典树构建¶
AC 自动机在初始时会将若干个模式串丢到一个 Trie 里,然后在 Trie 上建立 AC 自动机。这个 Trie 就是普通的 Trie,该怎么建怎么建。
这里需要仔细解释一下 Trie 的结点的含义,尽管这很小儿科,但在之后的理解中极其重要。Trie 中的结点表示的是某个模式串的前缀。我们在后文也将其称作状态。一个结点表示一个状态,Trie 的边就是状态的转移。
形式化地说,对于若干个模式串
失配指针¶
AC 自动机利用一个 fail 指针来辅助多模式串的匹配。
状态
- 共同点:两者同样是在失配的时候用于跳转的指针。
- 不同点:next 指针求的是最长 Border(即最长的相同前后缀),而 fail 指针指向所有模式串的前缀中匹配当前状态的最长后缀。
因为 KMP 只对一个模式串做匹配,而 AC 自动机要对多个模式串做匹配。有可能 fail 指针指向的结点对应着另一个模式串,两者前缀不同。
没看懂上面的对比不要急(也许我的脑回路和泥萌不一样是吧),你只需要知道,AC 自动机的失配指针指向当前状态的最长后缀状态即可。
AC 自动机在做匹配时,同一位上可匹配多个模式串。
构建指针¶
下面介绍构建 fail 指针的 基础思想:(强调!基础思想!基础!)
构建 fail 指针,可以参考 KMP 中构造 Next 指针的思想。
考虑字典树中当前的结点 c
的边指向
- 如果
\text{trie}[\text{fail}[p],c] \text{trie}[\text{fail}[p],c] p \text{fail}[p] c
,分别对应u fail[u] - 如果
\text{trie}[\text{fail}[p],c] \text{trie}[\text{fail}[\text{fail}[p]],c] - 如果真的没有,就让 fail 指针指向根结点。
如此即完成了
例子¶
下面放一张 GIF 帮助大家理解。对字符串 i
he
his
she
hers
组成的字典树构建 fail 指针:
- 黄色结点:当前的结点
u - 绿色结点:表示已经 BFS 遍历完毕的结点,
- 橙色的边:fail 指针。
- 红色的边:当前求出的 fail 指针。
我们重点分析结点 6 的 fail 指针构建:
找到 6 的父结点 5,s
连出的边;继续跳到 10 的 fail 指针,s
连出的边,指向 7 结点;所以
字典树与字典图¶
我们直接上代码吧。字典树插入的代码就不分析了(后面完整代码里有),先来看构建函数 build()
,该函数的目标有两个,一个是构建 fail 指针,一个是构建自动机。参数如下:
tr[u,c]
:有两种理解方式。我们可以简单理解为字典树上的一条边,即\text{trie}[u,c] u c
到达的状态(结点),即一个状态转移函数\text{trans}(u,c) - 队列
q
:用于 BFS 遍历字典树。 fail[u]
:结点u
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | // C++ Version
void build() {
for (int i = 0; i < 26; i++)
if (tr[0][i]) q.push(tr[0][i]);
while (q.size()) {
int u = q.front();
q.pop();
for (int i = 0; i < 26; i++) {
if (tr[u][i])
fail[tr[u][i]] = tr[fail[u]][i], q.push(tr[u][i]);
else
tr[u][i] = tr[fail[u]][i];
}
}
}
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # Python Version
def build():
for i in range(0, 26):
if tr[0][i] == 1:
q.append(tr[0][i])
while len(q) > 0:
u = q[0]
q.pop()
for i in range(0, 26):
if tr[u][i] == 1:
fail[tr[u][i]] = tr[fail[u]][i]
q.append(tr[u][i])
else:
tr[u][i] = tr[fail[u]][i]
|
解释一下上面的代码:build 函数将结点按 BFS 顺序入队,依次求 fail 指针。这里的字典树根结点为 0,我们将根结点的子结点一一入队。若将根结点入队,则在第一次 BFS 的时候,会将根结点儿子的 fail 指针标记为本身。因此我们将根结点的儿子一一入队,而不是将根结点入队。
然后开始 BFS:每次取出队首的结点 u(
- 如果
\text{trans}[u][i] \text{trans}[u][i] \text{trans}[\text{fail}[u]][i] i
对应的结点,然后赋值,但是这里通过特殊处理简化了这些代码。 - 否则,令
\text{trans}[u][i] \text{trans}[\text{fail}[u]][i]
这里的处理是,通过 else
语句的代码修改字典树的结构。没错,它将不存在的字典树的状态链接到了失配指针的对应状态。在原字典树中,每一个结点代表一个字符串
而 c
变成另一个状态
换言之在 Trie 上跳转的时侯,我们只会从 c
,然后舍弃
tr
数组还有另一种比较简单的理解方式:如果在位置 tr
数组直接记录记录下一个能匹配的位置,这样就能节省下很多时间。
这样修改字典树的结构,使得匹配转移更加完善。同时它将 fail 指针跳转的路径做了压缩(就像并查集的路径压缩),使得本来需要跳很多次 fail 指针变成跳一次。
好的,我知道大家都受不了长篇叙述。上图!我们将之前的 GIF 图改一下:
- 蓝色结点:BFS 遍历到的结点 u
- 蓝色的边:当前结点下,AC 自动机修改字典树结构连出的边。
- 黑色的边:AC 自动机修改字典树结构连出的边。
- 红色的边:当前结点求出的 fail 指针
- 黄色的边:fail 指针
- 灰色的边:字典树的边
可以发现,众多交错的黑色边将字典树变成了 字典图。图中省略了连向根结点的黑边(否则会更乱)。我们重点分析一下结点 5 遍历时的情况。我们求
本来的策略是找 fail 指针,于是我们跳到 s
连出的字典树的边,于是跳到
这就是 build 完成的两件事:构建 fail 指针和建立字典图。这个字典图也会在查询的时候起到关键作用。
多模式匹配¶
接下来分析匹配函数 query()
:
1 2 3 4 5 6 7 8 9 10 11 | // C++ Version
int query(char *t) {
int u = 0, res = 0;
for (int i = 1; t[i]; i++) {
u = tr[u][t[i] - 'a']; // 转移
for (int j = u; j && e[j] != -1; j = fail[j]) {
res += e[j], e[j] = -1;
}
}
return res;
}
|
1 2 3 4 5 6 7 8 9 10 11 12 13 | # Python Version
def query(t):
u, res = 0, 0
i = 1
while t[i] == False:
u = tr[u][t[i] - ord('a')]
j = u
while j == True and e[j] != -1:
res += e[j]
e[j] = -1
j = fail[j]
i += 1
return res
|
这里 res
即返回的答案。循环遍历匹配串,
我们从根结点开始尝试匹配 ushersheishis
,那么
- 红色结点:
p - 粉色箭头:
p - 蓝色的边:成功匹配的模式串
- 蓝色结点:示跳 fail 指针时的结点(状态)。
总结¶
希望大家看懂了文章。
时间复杂度:定义
模板 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | #include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 6;
int n;
namespace AC {
int tr[N][26], tot;
int e[N], fail[N];
void insert(char *s) {
int u = 0;
for (int i = 1; s[i]; i++) {
if (!tr[u][s[i] - 'a']) tr[u][s[i] - 'a'] = ++tot; //如果没有则插入新节点
u = tr[u][s[i] - 'a']; //搜索下一个节点
}
e[u]++; //尾为节点 u 的串的个数
}
queue<int> q;
void build() {
for (int i = 0; i < 26; i++)
if (tr[0][i]) q.push(tr[0][i]);
while (q.size()) {
int u = q.front();
q.pop();
for (int i = 0; i < 26; i++) {
if (tr[u][i]) {
fail[tr[u][i]] =
tr[fail[u]][i]; // fail数组:同一字符可以匹配的其他位置
q.push(tr[u][i]);
} else
tr[u][i] = tr[fail[u]][i];
}
}
}
int query(char *t) {
int u = 0, res = 0;
for (int i = 1; t[i]; i++) {
u = tr[u][t[i] - 'a']; // 转移
for (int j = u; j && e[j] != -1; j = fail[j]) {
res += e[j], e[j] = -1;
}
}
return res;
}
} // namespace AC
char s[N];
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%s", s + 1), AC::insert(s);
scanf("%s", s + 1);
AC::build();
printf("%d", AC::query(s));
return 0;
}
|
模板 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | #include <bits/stdc++.h>
using namespace std;
const int N = 156, L = 1e6 + 6;
namespace AC {
const int SZ = N * 80;
int tot, tr[SZ][26];
int fail[SZ], idx[SZ], val[SZ];
int cnt[N]; // 记录第 i 个字符串的出现次数
void init() {
memset(fail, 0, sizeof(fail));
memset(tr, 0, sizeof(tr));
memset(val, 0, sizeof(val));
memset(cnt, 0, sizeof(cnt));
memset(idx, 0, sizeof(idx));
tot = 0;
}
void insert(char *s, int id) { // id 表示原始字符串的编号
int u = 0;
for (int i = 1; s[i]; i++) {
if (!tr[u][s[i] - 'a']) tr[u][s[i] - 'a'] = ++tot;
u = tr[u][s[i] - 'a']; // 转移
}
idx[u] = id; // 以 u 为结尾的字符串编号为 idx[u]
}
queue<int> q;
void build() {
for (int i = 0; i < 26; i++)
if (tr[0][i]) q.push(tr[0][i]);
while (q.size()) {
int u = q.front();
q.pop();
for (int i = 0; i < 26; i++) {
if (tr[u][i]) {
fail[tr[u][i]] =
tr[fail[u]][i]; // fail数组:同一字符可以匹配的其他位置
q.push(tr[u][i]);
} else
tr[u][i] = tr[fail[u]][i];
}
}
}
int query(char *t) { // 返回最大的出现次数
int u = 0, res = 0;
for (int i = 1; t[i]; i++) {
u = tr[u][t[i] - 'a'];
for (int j = u; j; j = fail[j]) val[j]++;
}
for (int i = 0; i <= tot; i++)
if (idx[i]) res = max(res, val[i]), cnt[idx[i]] = val[i];
return res;
}
} // namespace AC
int n;
char s[N][100], t[L];
int main() {
while (~scanf("%d", &n)) {
if (n == 0) break;
AC::init(); // 数组清零
for (int i = 1; i <= n; i++)
scanf("%s", s[i] + 1), AC::insert(s[i], i); // 需要记录该字符串的序号
AC::build();
scanf("%s", t + 1);
int x = AC::query(t);
printf("%d\n", x);
for (int i = 1; i <= n; i++)
if (AC::cnt[i] == x) printf("%s\n", s[i] + 1);
}
return 0;
}
|
拓展¶
确定有限状态自动机¶
如果大家理解了上面的讲解,那么作为拓展延伸,文末我们简单介绍一下自动机与 KMP 自动机。(现在你再去看百科上自动机的定义就会好懂很多啦)
有限状态自动机(deterministic finite automaton,DFA)是由
- 状态集合
Q - 字符集
\Sigma - 状态转移函数
\delta:Q\times \Sigma \to Q \delta(q,\sigma)=q',\ q,q'\in Q,\sigma\in \Sigma - 一个开始状态
s\in Q - 一个接收的状态集合
F\subseteq Q
组成的五元组
那这东西你用 AC 自动机理解,状态集合就是字典树(图)的结点;字符集就是 a
到 z
(或者更多);状态转移函数就是
KMP 自动机¶
KMP 自动机就是一个不断读入待匹配串,每次匹配时走到接受状态的 DFA。如果共有
(约定
我们发现
时间和空间复杂度:
对比之下,AC 自动机其实就是 Trie 上的自动机。(虽然一开始丢给你这句话可能不知所措)
build本页面最近更新:,更新历史
edit发现错误?想一起完善? 在 GitHub 上编辑此页!
people本页面贡献者:OI-wiki
copyright本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用