双向搜索
本页面将简要介绍两种双向搜索算法:双向同时搜索和 Meet in the middle。
双向同时搜索¶
双向同时搜索的基本思路是从状态图上的起点和终点同时开始进行 广搜 或 深搜。如果发现搜索的两端相遇了,那么可以认为是获得了可行解。
双向广搜的步骤:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | 将开始结点和目标结点加入队列 q
标记开始结点为 1
标记目标结点为 2
while (队列 q 不为空)
{
从 q.front() 扩展出新的 s 个结点
如果 新扩展出的结点已经被其他数字标记过
那么 表示搜索的两端碰撞
那么 循环结束
如果 新的 s 个结点是从开始结点扩展来的
那么 将这个 s 个结点标记为 1 并且入队 q
如果 新的 s 个结点是从目标结点扩展来的
那么 将这个 s 个结点标记为 2 并且入队 q
}
|
Meet in the middle¶
Warning
本节要介绍的不是 二分搜索(二分搜索的另外一个译名为“折半搜索”)。
Meet in the middle 算法没有正式译名,常见的翻译为「折半搜索」、「双向搜索」或「中途相遇」。它适用于输入数据较小,但还没小到能直接使用暴力搜索的情况。
主要思想是将整个搜索过程分成两半,分别搜索,最后将两半的结果合并。
暴力搜索的复杂度往往是指数级的,而改用 meet in the middle 算法后复杂度的指数可以减半,即让复杂度从
例题 「USACO09NOV」灯 Lights
有
解题思路
如果这道题暴力 DFS 找开关灯的状态,时间复杂度就是
参考代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | #include <algorithm>
#include <cstdio>
#include <iostream>
#include <map>
using namespace std;
int n, m, ans = 0x7fffffff;
map<long long, int> f;
long long a[40];
int main() {
cin >> n >> m;
a[0] = 1;
for (int i = 1; i < n; ++i) a[i] = a[i - 1] * 2; //进行预处理
for (int i = 1; i <= m; ++i) { //对输入的边的情况进行处理
int u, v;
cin >> u >> v;
--u;
--v;
a[u] |= ((long long)1 << v);
a[v] |= ((long long)1 << u);
}
for (int i = 0; i < (1 << (n / 2)); ++i) { //对前一半进行搜索
long long t = 0;
int cnt = 0;
for (int j = 0; j < n / 2; ++j) {
if ((i >> j) & 1) {
t ^= a[j];
++cnt;
}
}
if (!f.count(t))
f[t] = cnt;
else
f[t] = min(f[t], cnt);
}
for (int i = 0; i < (1 << (n - n / 2)); ++i) { //对后一半进行搜索
long long t = 0;
int cnt = 0;
for (int j = 0; j < (n - n / 2); ++j) {
if ((i >> j) & 1) {
t ^= a[n / 2 + j];
++cnt;
}
}
if (f.count((((long long)1 << n) - 1) ^ t))
ans = min(ans, cnt + f[(((long long)1 << n) - 1) ^ t]);
}
cout << ans;
return 0;
}
|
外部链接¶
- What is meet in the middle algorithm w.r.t. competitive programming? - Quora
- Meet in the Middle Algorithm - YouTube
build本页面最近更新:,更新历史
edit发现错误?想一起完善? 在 GitHub 上编辑此页!
people本页面贡献者:FFjet, ChungZH, frank-xjh, hsfzLZH1, Xarfa, AndrewWayne
copyright本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用