在一台机器上规划任务

你有 n 个任务,要求你找到一个代价最小的的顺序执行他们。第 i 个任务花费的时间是 t_i ,而第 i 个任务等待 t 的时间会花费 f_i(t) 的代价。

形式化地说,给出 n 个函数 f_i n 个数 t_i ,求一个排列 p ,最小化

F(p)=\sum_{i=1}^nf_{p_i}\left(\sum_{j=1}^{i-1}t_{p_j}\right)

特殊的代价函数

线性代价函数

首先我们考虑所有的函数是线性的函数,即 f_i(x)=c_ix+d_i ,其中 c_i 是非负整数。显然我们可以事先把常数项加起来,因此函数就转化为了 f_i(x)=c_ix 的形式。

考虑两个排列 p p' ,其中 p' 是把 p 的第 i 个位置上的数和 i+1 个位置上的数交换得到的排列。则

\begin{split} F(p')-F(p)&=c_{p'_i}\sum_{j=1}^{i-1}t_{p'_j}+c_{p'_{i+1}}\sum_{j=1}^{i}t_{p'_j} -\left(c_{p_i}\sum_{j=1}^{i-1}t_{p_j}+c_{p_{i+1}}\sum_{j=1}^{i}t_{p_j}\right)\\ &=c_{p_i}t_{p_{i+1}}-c_{p_{i+1}}t_{p_i} \end{split}

于是我们使用如果 c_{p_i}t_{p_{i+1}}-c_{p_{i+1}}t_{p_i}>0 就交换的策略做一下排序就可以了。写成 \dfrac{c_{p_i}}{t_{p_i}}>\dfrac{c_{p_{i+1}}}{t_{p_{i+1}}} 的形式,就可以理解为将排列按 \dfrac{c_i}{t_i} 升序排序。

处理这个问题,我们的思路是考虑微扰后的变换情况,贪心地选取最优解。

指数代价函数

考虑代价函数的形式为 f_i(x)=c_ie^{ax} ,其中 c_i\ge 0,a>0

我们沿用之前的思路,考虑将 i i+1 的位置上的数交换引起的代价变化。最终得到的算法是将排列按照 \dfrac{1-e^{at_i}}{c_i} 升序排序。

相同的单增函数

我们考虑所有的 f_i(x) 是同一个单增函数。那么显然我们将排列按照 t_i 升序排序即可。

Livshits-Kladov 定理

Livshits-Kladov 定理成立,当且仅当代价函数是以下三种情况:

  • 线性函数: f_i(t) = c_it + d_i ,其中 c_i\ge 0
  • 指数函数: f_i(t) = c_i e^{a t} + d_i ,其中 c_i,a>0
  • 相同的单增函数: f_i(t) = \phi(t) ,其中 \phi(t) 是一个单增函数。

定理是在假设代价函数足够平滑(存在三阶导数)的条件下证明的。在这三种情况下,问题的最优解可以通过简单的排序在 O(n\log n) 的时间内解决。


本页面主要译自博文 Задача Джонсона с одним станком 与其英文翻译版 Scheduling jobs on one machine。其中俄文版版权协议为 Public Domain + Leave a Link;英文版版权协议为 CC-BY-SA 4.0。


评论