多项式求逆

描述

给定多项式 f\left(x\right) ,求 f^{-1}\left(x\right)

解法

倍增法

首先,易知

\left[x^{0}\right]f^{-1}\left(x\right)=\left(\left[x^{0}\right]f\left(x\right)\right)^{-1}

假设现在已经求出了 f\left(x\right) 在模 x^{\left\lceil\frac{n}{2}\right\rceil} 意义下的逆元 f^{-1}_{0}\left(x\right) 。 有:

\begin{aligned} f\left(x\right)f^{-1}_{0}\left(x\right)&\equiv 1 &\pmod{x^{\left\lceil\frac{n}{2}\right\rceil}}\\ f\left(x\right)f^{-1}\left(x\right)&\equiv 1 &\pmod{x^{\left\lceil\frac{n}{2}\right\rceil}}\\ f^{-1}\left(x\right)-f^{-1}_{0}\left(x\right)&\equiv 0 &\pmod{x^{\left\lceil\frac{n}{2}\right\rceil}} \end{aligned}

两边平方可得:

f^{-2}\left(x\right)-2f^{-1}\left(x\right)f^{-1}_{0}\left(x\right)+f^{-2}_{0}\left(x\right)\equiv 0 \pmod{x^{n}}

两边同乘 f\left(x\right) 并移项可得:

f^{-1}\left(x\right)\equiv f^{-1}_{0}\left(x\right)\left(2-f\left(x\right)f^{-1}_{0}\left(x\right)\right) \pmod{x^{n}}

递归计算即可。

时间复杂度

T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right)

Newton's Method

参见 Newton's Method.

Graeffe 法

欲求 f^{-1}(x)\bmod x^{2n} 考虑

\begin{aligned} f^{-1}(x)\bmod x^{2n}&= f(-x)(f(x)f(-x))^{-1}\bmod x^{2n}\\ &=f(-x)g^{-1}(x^2)\bmod x^{2n} \end{aligned}

只需求出 g^{-1}(x)\bmod x^n 即可还原出 g^{-1}(x^2)\bmod x^{2n} 因为 f(x)f(-x) 是偶函数,时间复杂度同上。

代码

多项式求逆
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
constexpr int maxn = 262144;
constexpr int mod = 998244353;

using i64 = long long;
using poly_t = int[maxn];
using poly = int *const;

void polyinv(const poly &h, const int n, poly &f) {
  /* f = 1 / h = f_0 (2 - f_0 h) */
  static poly_t inv_t;
  std::fill(f, f + n + n, 0);
  f[0] = fpow(h[0], mod - 2);
  for (int t = 2; t <= n; t <<= 1) {
    const int t2 = t << 1;
    std::copy(h, h + t, inv_t);
    std::fill(inv_t + t, inv_t + t2, 0);

    DFT(f, t2);
    DFT(inv_t, t2);
    for (int i = 0; i != t2; ++i)
      f[i] = (i64)f[i] * sub(2, (i64)f[i] * inv_t[i] % mod) % mod;
    IDFT(f, t2);

    std::fill(f + t, f + t2, 0);
  }
}

例题

  1. 有标号简单无向连通图计数:「POJ 1737」Connected Graph

评论