多项式求逆
描述
给定多项式 ,求 。
解法
倍增法
首先,易知
假设现在已经求出了 在模 意义下的逆元 。 有:
两边平方可得:
两边同乘 并移项可得:
递归计算即可。
时间复杂度
Newton's Method
参见 Newton's Method.
Graeffe 法
欲求 考虑
只需求出 即可还原出 因为 是偶函数,时间复杂度同上。
代码
多项式求逆
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | constexpr int maxn = 262144;
constexpr int mod = 998244353;
using i64 = long long;
using poly_t = int[maxn];
using poly = int *const;
void polyinv(const poly &h, const int n, poly &f) {
/* f = 1 / h = f_0 (2 - f_0 h) */
static poly_t inv_t;
std::fill(f, f + n + n, 0);
f[0] = fpow(h[0], mod - 2);
for (int t = 2; t <= n; t <<= 1) {
const int t2 = t << 1;
std::copy(h, h + t, inv_t);
std::fill(inv_t + t, inv_t + t2, 0);
DFT(f, t2);
DFT(inv_t, t2);
for (int i = 0; i != t2; ++i)
f[i] = (i64)f[i] * sub(2, (i64)f[i] * inv_t[i] % mod) % mod;
IDFT(f, t2);
std::fill(f + t, f + t2, 0);
}
}
|
例题
- 有标号简单无向连通图计数:「POJ 1737」Connected Graph
build本页面最近更新:,更新历史
edit发现错误?想一起完善? 在 GitHub 上编辑此页!
people本页面贡献者:OI-wiki
copyright本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用