快速傅里叶变换
前置知识:复数。
本文将介绍一种算法,它支持在
概述¶
离散傅里叶变换(Discrete Fourier Transform,缩写为 DFT),是傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其 DTFT 的频域采样。
FFT 是一种高效实现 DFT 的算法,称为 快速傅立叶变换(Fast Fourier Transform,FFT)。它对傅里叶变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。快速数论变换 (NTT) 是快速傅里叶变换(FFT)在数论基础上的实现。
在 1965 年,Cooley 和 Tukey 发表了快速傅里叶变换算法。事实上 FFT 早在这之前就被发现过了,但是在当时现代计算机并未问世,人们没有意识到 FFT 的重要性。一些调查者认为 FFT 是由 Runge 和 König 在 1924 年发现的。但事实上高斯早在 1805 年就发明了这个算法,但一直没有发表。
多项式的表示¶
系数表示法¶
系数表示法就是用一个多项式的各个项系数来表达这个多项式,即使用一个系数序列来表示多项式:
点值表示法¶
点值表示法是把这个多项式看成一个函数,从上面选取
为什么用 n+1 个点就能唯一地表示这个函数
想一下高斯消元法,两点确定一条直线。再来一个点,能确定这个直线中的另一个参数,那么也就是说
设
那么用点值表示法表示
通俗地说,多项式由系数表示法转为点值表示法的过程,就是 DFT 的过程。相对地,把一个多项式的点值表示法转化为系数表示法的过程,就是 IDFT。而 FFT 就是通过取某些特殊的
单位复根¶
考虑这样一个问题:
DFT 是把多项式从系数表示转到了点值表示,那么我们把点值相乘之后,再还原成系数表示,就解决了我们的问题。上述过程如下:
假设我们 DFT 过程对于两个多项式选取的
如果我们设
但是我们要的是系数表达式,接下来问题变成了从点值回到系数。如果我们带入到高斯消元法的方程组中去,会把复杂度变得非常高。光是计算
因此我们不去计算
观察上图,容易发现这是一个单位圆(圆心为原点,半径为
定义¶
严谨地,我们称
另一方面,根据欧拉公式,还可以得到
举个例子,当
当
性质¶
单位复根有三个重要的性质。对于任意正整数
快速傅里叶变换¶
FFT 算法的基本思想是分治。就 DFT 来说,它分治地来求当
举个例子,对于一共
按照次数的奇偶来分成两组,然后右边提出来一个
分别用奇偶次次项数建立新的函数
那么原来的
利用单位复根的性质得到
同理可得
因此我们求出了
考虑到分治 DFT 能处理的多项式长度只能是
在代入值的时候,因为要代入
代码实现方面,STL 提供了复数的模板,当然也可以手动实现。两者区别在于,使用 STL 的 complex
可以调用 exp
函数求出
递归版 FFT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | #include <cmath>
#include <complex>
typedef std::complex<double> Comp; // STL complex
const Comp I(0, 1); // i
const int MAX_N = 1 << 20;
Comp tmp[MAX_N];
void DFT(Comp *f, int n, int rev) { // rev=1,DFT; rev=-1,IDFT
if (n == 1) return;
for (int i = 0; i < n; ++i) tmp[i] = f[i];
for (int i = 0; i < n; ++i) { // 偶数放左边,奇数放右边
if (i & 1)
f[n / 2 + i / 2] = tmp[i];
else
f[i / 2] = tmp[i];
}
Comp *g = f, *h = f + n / 2;
DFT(g, n / 2, rev), DFT(h, n / 2, rev); // 递归 DFT
Comp cur(1, 0), step(cos(2 * M_PI / n), sin(2 * M_PI * rev / n));
// Comp step=exp(I*(2*M_PI/n*rev)); // 两个 step 定义是等价的
for (int k = 0; k < n / 2; ++k) {
tmp[k] = g[k] + cur * h[k];
tmp[k + n / 2] = g[k] - cur * h[k];
cur *= step;
}
for (int i = 0; i < n; ++i) f[i] = tmp[i];
}
|
时间复杂度
位逆序置换¶
这个算法还可以从“分治”的角度继续优化。我们每一次都会把整个多项式的奇数次项和偶数次项系数分开,一直分到只剩下一个系数。但是,这个递归的过程需要更多的内存。因此,我们可以先“模仿递归”把这些系数在原数组中“拆分”,然后再“倍增”地去合并这些算出来的值。
以
- 初始序列为
\{x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7\} - 一次二分之后
\{x_0, x_2, x_4, x_6\},\{x_1, x_3, x_5, x_7 \} - 两次二分之后
\{x_0,x_4\} \{x_2, x_6\},\{x_1, x_5\},\{x_3, x_7 \} - 三次二分之后
\{x_0\}\{x_4\}\{x_2\}\{x_6\}\{x_1\}\{x_5\}\{x_3\}\{x_7 \}
规律:其实就是原来的那个序列,每个数用二进制表示,然后把二进制翻转对称一下,就是最终那个位置的下标。比如
根据它的定义,我们可以在
位逆序变换实现( O(n\log n) )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /*
* 进行 FFT 和 IFFT 前的反置变换
* 位置 i 和 i 的二进制反转后的位置互换
*len 必须为 2 的幂
*/
void change(Complex y[], int len) {
int i, j, k;
for (int i = 1, j = len / 2; i < len - 1; i++) {
if (i < j) swap(y[i], y[j]);
// 交换互为小标反转的元素,i<j 保证交换一次
// i 做正常的 + 1,j 做反转类型的 + 1,始终保持 i 和 j 是反转的
k = len / 2;
while (j >= k) {
j = j - k;
k = k / 2;
}
if (j < k) j += k;
}
}
|
实际上,位逆序变换可以
首先
我们从小到大求
考虑个位的翻转结果:如果个位是
举个例子:设
- 考虑
(1100)_2 R((1100)_2)=R((01100)_2)=(00110)_2 (00011)_2 - 考虑个位,如果是
1 (10000)_2=2^{k-1} 0
位逆序变换实现( O(n) )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | // 同样需要保证 len 是 2 的幂
// 记 rev[i] 为 i 翻转后的值
void change(Complex y[], int len) {
for (int i = 0; i < len; ++i) {
rev[i] = rev[i >> 1] >> 1;
if (i & 1) { // 如果最后一位是 1,则翻转成 len/2
rev[i] |= len >> 1;
}
}
for (int i = 0; i < len; ++i) {
if (i < rev[i]) { // 保证每对数只翻转一次
swap(y[i], y[rev[i]]);
}
}
return;
}
|
快速傅里叶逆变换¶
傅里叶逆变换可以用傅里叶变换表示。对此我们有两种理解方式。
线性代数角度¶
IDFT(傅里叶反变换)的作用,是把目标多项式的点值形式转换成系数形式。而 DFT 本身是个线性变换,可以理解为将目标多项式当作向量,左乘一个矩阵得到变换后的向量,以模拟把单位复根代入多项式的过程:
现在我们已经得到最左边的结果了,中间的
为了使计算的结果为原来的倒数,根据单位复根的性质并结合欧拉公式,可以得到
因此我们可以尝试着把单位根
单位复根周期性¶
利用单位复根的周期性同样可以理解 IDFT 与 DFT 之间的关系。
考虑原本的多项式是
考虑 构造法。我们已知
相当于把
这时我们有两种推导方式,这对应了两种实现方法。
方法一¶
设
对
记
当
当
也就是说
那么代回原式
也就是说给定点
综上所述,我们取单位根为其倒数,对
方法二¶
我们直接将
推导的过程与方法一大同小异,最终我们得到
当且仅当
这意味着我们将
代码实现¶
所以我们 FFT 函数可以集 DFT 和 IDFT 于一身。代码实现如下:
非递归版 FFT(对应方法一)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | /*
* 做 FFT
* len 必须是 2^k 形式
* on == 1 时是 DFT,on == -1 时是 IDFT
*/
void fft(Complex y[], int len, int on) {
change(y, len);
for (int h = 2; h <= len; h <<= 1) { // 模拟合并过程
Complex wn(cos(2 * PI / h), sin(on * 2 * PI / h)); // 计算当前单位复根
for (int j = 0; j < len; j += h) {
Complex w(1, 0); // 计算当前单位复根
for (int k = j; k < j + h / 2; k++) {
Complex u = y[k];
Complex t = w * y[k + h / 2];
y[k] = u + t; // 这就是把两部分分治的结果加起来
y[k + h / 2] = u - t;
// 后半个 “step” 中的ω一定和 “前半个” 中的成相反数
// “红圈”上的点转一整圈“转回来”,转半圈正好转成相反数
// 一个数相反数的平方与这个数自身的平方相等
w = w * wn;
}
}
}
if (on == -1) {
for (int i = 0; i < len; i++) {
y[i].x /= len;
}
}
}
|
非递归版 FFT(对应方法二)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | /*
* 做 FFT
* len 必须是 2^k 形式
* on == 1 时是 DFT,on == -1 时是 IDFT
*/
void fft(Complex y[], int len, int on) {
change(y, len);
for (int h = 2; h <= len; h <<= 1) { // 模拟合并过程
Complex wn(cos(2 * PI / h), sin(2 * PI / h)); // 计算当前单位复根
for (int j = 0; j < len; j += h) {
Complex w(1, 0); // 计算当前单位复根
for (int k = j; k < j + h / 2; k++) {
Complex u = y[k];
Complex t = w * y[k + h / 2];
y[k] = u + t; // 这就是把两部分分治的结果加起来
y[k + h / 2] = u - t;
// 后半个 “step” 中的ω一定和 “前半个” 中的成相反数
// “红圈”上的点转一整圈“转回来”,转半圈正好转成相反数
// 一个数相反数的平方与这个数自身的平方相等
w = w * wn;
}
}
}
if (on == -1) {
reverse(y, y + len);
for (int i = 0; i < len; i++) {
y[i].x /= len;
}
}
}
|
FFT 模板( HDU 1402 )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | #include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const double PI = acos(-1.0);
struct Complex {
double x, y;
Complex(double _x = 0.0, double _y = 0.0) {
x = _x;
y = _y;
}
Complex operator-(const Complex &b) const {
return Complex(x - b.x, y - b.y);
}
Complex operator+(const Complex &b) const {
return Complex(x + b.x, y + b.y);
}
Complex operator*(const Complex &b) const {
return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
}
};
/*
* 进行 FFT 和 IFFT 前的反置变换
* 位置 i 和 i 的二进制反转后的位置互换
*len 必须为 2 的幂
*/
void change(Complex y[], int len) {
int i, j, k;
for (int i = 1, j = len / 2; i < len - 1; i++) {
if (i < j) swap(y[i], y[j]);
// 交换互为小标反转的元素,i<j 保证交换一次
// i 做正常的 + 1,j 做反转类型的 + 1,始终保持 i 和 j 是反转的
k = len / 2;
while (j >= k) {
j = j - k;
k = k / 2;
}
if (j < k) j += k;
}
}
/*
* 做 FFT
*len 必须是 2^k 形式
*on == 1 时是 DFT,on == -1 时是 IDFT
*/
void fft(Complex y[], int len, int on) {
change(y, len);
for (int h = 2; h <= len; h <<= 1) {
Complex wn(cos(2 * PI / h), sin(on * 2 * PI / h));
for (int j = 0; j < len; j += h) {
Complex w(1, 0);
for (int k = j; k < j + h / 2; k++) {
Complex u = y[k];
Complex t = w * y[k + h / 2];
y[k] = u + t;
y[k + h / 2] = u - t;
w = w * wn;
}
}
}
if (on == -1) {
for (int i = 0; i < len; i++) {
y[i].x /= len;
}
}
}
const int MAXN = 200020;
Complex x1[MAXN], x2[MAXN];
char str1[MAXN / 2], str2[MAXN / 2];
int sum[MAXN];
int main() {
while (scanf("%s%s", str1, str2) == 2) {
int len1 = strlen(str1);
int len2 = strlen(str2);
int len = 1;
while (len < len1 * 2 || len < len2 * 2) len *= 2;
for (int i = 0; i < len1; i++) x1[i] = Complex(str1[len1 - 1 - i] - '0', 0);
for (int i = len1; i < len; i++) x1[i] = Complex(0, 0);
for (int i = 0; i < len2; i++) x2[i] = Complex(str2[len2 - 1 - i] - '0', 0);
for (int i = len2; i < len; i++) x2[i] = Complex(0, 0);
fft(x1, len, 1);
fft(x2, len, 1);
for (int i = 0; i < len; i++) x1[i] = x1[i] * x2[i];
fft(x1, len, -1);
for (int i = 0; i < len; i++) sum[i] = int(x1[i].x + 0.5);
for (int i = 0; i < len; i++) {
sum[i + 1] += sum[i] / 10;
sum[i] %= 10;
}
len = len1 + len2 - 1;
while (sum[len] == 0 && len > 0) len--;
for (int i = len; i >= 0; i--) printf("%c", sum[i] + '0');
printf("\n");
}
return 0;
}
//加油加油!
|
快速数论变换¶
若要计算的多项式系数是别的具有特殊意义的整数,那么 FFT 全部用浮点数运算,从时间上比整数运算慢,且只能用 long double 类型。
要应用数论变化从而避开浮点运算精度问题,参见 快速数论变换。
参考文献¶
build本页面最近更新:,更新历史
edit发现错误?想一起完善? 在 GitHub 上编辑此页!
people本页面贡献者:AndrewWayne, GavinZhengOI, ChungZH, henryrabbit, Xeonacid, sshwy, Yukimaikoriya
copyright本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用