树的重心
定义¶
对于树上的每一个点,计算其所有子树中最大的子树节点数,这个值最小的点就是这棵树的重心。
(这里以及下文中的“子树”都是指无根树的子树,即包括“向上”的那棵子树,并且不包括整棵树自身。)
性质¶
以树的重心为根时,所有子树的大小都不超过整棵树大小的一半。
树中所有点到某个点的距离和中,到重心的距离和是最小的;如果有两个重心,那么到它们的距离和一样。
把两棵树通过一条边相连得到一棵新的树,那么新的树的重心在连接原来两棵树的重心的路径上。
在一棵树上添加或删除一个叶子,那么它的重心最多只移动一条边的距离。
求法¶
在 DFS 中计算每个子树的大小,记录“向下”的子树的最大大小,利用总点数 - 当前子树(这里的子树指有根树的子树)的大小得到“向上”的子树的大小,然后就可以依据定义找到重心了。
参考代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | // 这份代码默认节点编号从 1 开始,即 i ∈ [1,n]
int size[MAXN], // 这个节点的“大小”(所有子树上节点数 + 该节点)
weight[MAXN], // 这个节点的“重量”
centroid[2]; // 用于记录树的重心(存的是节点编号)
void GetCentroid(int cur, int fa) { // cur 表示当前节点 (current)
size[cur] = 1;
weight[cur] = 0;
for (int i = head[cur]; i != -1; i = e[i].nxt) {
if (e[i].to != fa) { // e[i].to 表示这条有向边所通向的节点。
GetCentroid(e[i].to, cur);
size[cur] += size[e[i].to];
weight[cur] = max(weight[cur], size[e[i].to]);
}
}
weight[cur] = max(weight[cur], n - size[cur]);
if (weight[cur] <= n / 2) { // 依照树的重心的定义统计
centroid[centroid[0] != 0] = cur;
}
}
|
参考¶
http://fanhq666.blog.163.com/blog/static/81943426201172472943638/(博客园转载,Internet Archive)
https://blog.csdn.net/weixin_43810158/article/details/88391828
https://www.cnblogs.com/zinthos/p/3899075.html
习题¶
build本页面最近更新:,更新历史
edit发现错误?想一起完善? 在 GitHub 上编辑此页!
people本页面贡献者:Ir1d, Marcythm, LucienShui, Anguei, H-J-Granger, CornWorld
copyright本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用