图的存储
在 OI 中,想要对图进行操作,就需要先学习图的存储方式。
约定¶
本文默认读者已阅读并了解了 图论相关概念 中的基础内容,如果在阅读中遇到困难,也可以在 图论相关概念 中进行查阅。
在本文中,用
直接存边¶
方法¶
使用一个数组来存边,数组中的每个元素都包含一条边的起点与终点(带边权的图还包含边权)。(或者使用多个数组分别存起点,终点和边权。)
参考代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | // C++ Version
#include <iostream>
#include <vector>
using namespace std;
struct Edge {
int u, v;
};
int n, m;
vector<Edge> e;
vector<bool> vis;
bool find_edge(int u, int v) {
for (int i = 1; i <= m; ++i) {
if (e[i].u == u && e[i].v == v) {
return true;
}
}
return false;
}
void dfs(int u) {
if (vis[u]) return;
vis[u] = true;
for (int i = 1; i <= m; ++i) {
if (e[i].u == u) {
dfs(e[i].v);
}
}
}
int main() {
cin >> n >> m;
vis.resize(n + 1, false);
e.resize(m + 1);
for (int i = 1; i <= m; ++i) cin >> e[i].u >> e[i].v;
return 0;
}
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | # Python Version
class Edge:
u = 0
v = 0
n, m = map(lambda x:int(x), input().split())
e = [Edge()] * m; vis = [False] * n
for i in range(0, m):
e[i].u, e[i].v = map(lambda x:int(x), input().split())
def find_edge(u, v):
for i in range(1, m + 1):
if e[i].u == u and e[i].v == v:
return True
return False
def dfs(u):
if vis[u]:
return
vis[u] = True
for i in range(1, m + 1):
if e[i].u == u:
dfs(e[i].v)
|
复杂度¶
查询是否存在某条边:
遍历一个点的所有出边:
遍历整张图:
空间复杂度:
应用¶
由于直接存边的遍历效率低下,一般不用于遍历图。
在 Kruskal 算法 中,由于需要将边按边权排序,需要直接存边。
在有的题目中,需要多次建图(如建一遍原图,建一遍反图),此时既可以使用多个其它数据结构来同时存储多张图,也可以将边直接存下来,需要重新建图时利用直接存下的边来建图。
邻接矩阵¶
方法¶
使用一个二维数组 adj
来存边,其中 adj[u][v]
为 1 表示存在 adj[u][v]
中存储
参考代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | // C++ Version
#include <iostream>
#include <vector>
using namespace std;
int n, m;
vector<bool> vis;
vector<vector<bool> > adj;
bool find_edge(int u, int v) { return adj[u][v]; }
void dfs(int u) {
if (vis[u]) return;
vis[u] = true;
for (int v = 1; v <= n; ++v) {
if (adj[u][v]) {
dfs(v);
}
}
}
int main() {
cin >> n >> m;
vis.resize(n + 1, false);
adj.resize(n + 1, vector<bool>(n + 1, false));
for (int i = 1; i <= m; ++i) {
int u, v;
cin >> u >> v;
adj[u][v] = true;
}
return 0;
}
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | # Python Version
vis = [False] * (n + 1)
adj = [[False]] * (n + 1)
for i in range(1, m + 1):
u, v = map(lambda x:int(x), input().split())
adj[u][v] = True
def find_edge(u, v):
return adj[u][v]
def dfs(u):
if vis[u]:
return
vis[u] = True
for v in range(1, n + 1):
if adj[u][v]:
dfs(v)
|
复杂度¶
查询是否存在某条边:
遍历一个点的所有出边:
遍历整张图:
空间复杂度:
应用¶
邻接矩阵只适用于没有重边(或重边可以忽略)的情况。
其最显著的优点是可以
由于邻接矩阵在稀疏图上效率很低(尤其是在点数较多的图上,空间无法承受),所以一般只会在稠密图上使用邻接矩阵。
邻接表¶
方法¶
使用一个支持动态增加元素的数据结构构成的数组,如 vector<int> adj[n + 1]
来存边,其中 adj[u]
存储的是点
参考代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | // C++ Version
#include <iostream>
#include <vector>
using namespace std;
int n, m;
vector<bool> vis;
vector<vector<int> > adj;
bool find_edge(int u, int v) {
for (int i = 0; i < adj[u].size(); ++i) {
if (adj[u][i] == v) {
return true;
}
}
return false;
}
void dfs(int u) {
if (vis[u]) return;
vis[u] = true;
for (int i = 0; i < adj[u].size(); ++i) dfs(adj[u][i]);
}
int main() {
cin >> n >> m;
vis.resize(n + 1, false);
adj.resize(n + 1);
for (int i = 1; i <= m; ++i) {
int u, v;
cin >> u >> v;
adj[u].push_back(v);
}
return 0;
}
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | # Python Version
vis = [False] * (n + 1)
adj = [[]] * (n + 1)
for i in range(1, m + 1):
u, v = map(lambda x:int(x), input().split())
adj[u].append(v)
def find_edge(u, v):
for i in range(0, len(adj[u])):
if adj[u][i] == v:
return True
return False
def dfs(u):
if vis[u]:
return
vis[u] = True
for i in range(0, len(adj[u])):
dfs(adj[u][i])
|
复杂度¶
查询是否存在
遍历点
遍历整张图:
空间复杂度:
应用¶
存各种图都很适合,除非有特殊需求(如需要快速查询一条边是否存在,且点数较少,可以使用邻接矩阵)。
尤其适用于需要对一个点的所有出边进行排序的场合。
链式前向星¶
方法¶
本质上是用链表实现的邻接表,核心代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 | // C++ Version
// head[u] 和 cnt 的初始值都为 -1
void add(int u, int v) {
nxt[++cnt] = head[u]; // 当前边的后继
head[u] = cnt; // 起点 u 的第一条边
to[cnt] = v; // 当前边的终点
}
// 遍历 u 的出边
for (int i = head[u]; ~i; i = nxt[i]) { // ~i 表示 i != -1
int v = to[i];
}
|
1 2 3 4 5 6 7 8 9 10 11 12 13 | # Python Version
# head[u] 和 cnt 的初始值都为 -1
def add(u, v):
cnt = cnt + 1
nex[cnt] = head[u] # 当前边的后继
head[u] = cnt # 起点 u 的第一条边
to[cnt] = v # 当前边的终点
# 遍历 u 的出边
i = head[u]
while ~i: # ~i 表示 i != -1
v = to[i]
i = nxt[i]
|
参考代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | #include <iostream>
#include <vector>
using namespace std;
int n, m;
vector<bool> vis;
vector<int> head, nxt, to;
void add(int u, int v) {
nxt.push_back(head[u]);
head[u] = to.size();
to.push_back(v);
}
bool find_edge(int u, int v) {
for (int i = head[u]; ~i; i = nxt[i]) { // ~i 表示 i != -1
if (to[i] == v) {
return true;
}
}
return false;
}
void dfs(int u) {
if (vis[u]) return;
vis[u] = true;
for (int i = head[u]; ~i; i = nxt[i]) dfs(to[i]);
}
int main() {
cin >> n >> m;
vis.resize(n + 1, false);
head.resize(n + 1, -1);
for (int i = 1; i <= m; ++i) {
int u, v;
cin >> u >> v;
add(u, v);
}
return 0;
}
|
复杂度¶
查询是否存在
遍历点
遍历整张图:
空间复杂度:
应用¶
存各种图都很适合,但不能快速查询一条边是否存在,也不能方便地对一个点的出边进行排序。
优点是边是带编号的,有时会非常有用,而且如果 cnt
的初始值为奇数,存双向边时 i ^ 1
即是 i
的反边(常用于 网络流)。
build本页面最近更新:,更新历史
edit发现错误?想一起完善? 在 GitHub 上编辑此页!
people本页面贡献者:Ir1d, sshwy, Xeonacid, partychicken, Anguei, HeRaNO
copyright本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用