图论相关概念

本页面概述了图论中的一些概念,这些概念并不全是在 OI 中常见的,对于 OIer 来说,只需掌握本页面中的基础部分即可,如果在学习中碰到了不懂的概念,可以再来查阅。

Warning

图论相关定义在不同教材中往往会有所不同,遇到的时候需根据上下文加以判断。

图 (Graph) 是一个二元组 G=(V(G), E(G)) 。其中 V(G) 是非空集,称为 点集 (Vertex set),对于 V 中的每个元素,我们称其为 顶点 (Vertex)节点 (Node),简称 E(G) V(G) 各结点之间边的集合,称为 边集 (Edge set)

常用 G=(V,E) 表示图。

V,E 都是有限集合时,称 G 有限图

V E 是无限集合时,称 G 无限图

图有多种,包括 无向图 (Undirected graph)有向图 (Directed graph)混合图 (Mixed graph)

G 为无向图,则 E 中的每个元素为一个无序二元组 (u, v) ,称作 无向边 (Undirected edge),简称 边 (Edge),其中 u, v \in V 。设 e = (u, v) ,则 u v 称为 e 端点 (Endpoint)

G 为有向图,则 E 中的每一个元素为一个有序二元组 (u, v) ,有时也写作 u \to v ,称作 有向边 (Directed edge)弧 (Arc),在不引起混淆的情况下也可以称作 边 (Edge)。设 e = u \to v ,则此时 u 称为 e 起点 (Tail) v 称为 e 终点 (Head),起点和终点也称为 e 端点 (Endpoint)。并称 u v 的直接前驱, v u 的直接后继。

为什么起点是 Tail,终点是 Head?

边通常用箭头表示,而箭头是从“尾”指向“头”的。

G 为混合图,则 E 中既有向边,又有无向边。

G 的每条边 e_k=(u_k,v_k) 都被赋予一个数作为该边的 ,则称 G 赋权图。如果这些权都是正实数,就称 G 正权图

G 的点数 \left| V(G) \right| 也被称作图 G 阶 (Order)

形象地说,图是由若干点以及连接点与点的边构成的。

相邻

在无向图 G = (V, E) 中,若点 v 是边 e 的一个端点,则称 v e 关联的 (Incident)相邻的 (Adjacent)。对于两顶点 u v ,若存在边 (u, v) ,则称 u v 相邻的 (Adjacent)

一个顶点 v \in V 邻域 (Neighborhood) 是所有与之相邻的顶点所构成的集合,记作 N(v)

一个点集 S 的邻域是所有与 S 中至少一个点相邻的点所构成的集合,记作 N(S) ,即:

N(S) = \bigcup_{v \in S} N(v)

度数

与一个顶点 v 关联的边的条数称作该顶点的 度 (Degree),记作 d(v) 。特别地,对于边 (v, v) ,则每条这样的边要对 d(v) 产生 2 的贡献。

对于无向简单图,有 d(v) = \left| N(v) \right|

握手定理(又称图论基本定理):对于任何无向图 G = (V, E) ,有 \sum_{v \in V} d(v) = 2 \left| E \right|

推论:在任意图中,度数为奇数的点必然有偶数个。

d(v) = 0 ,则称 v 孤立点 (Isolated vertex)

d(v) = 1 ,则称 v 叶节点 (Leaf vertex)/悬挂点 (Pendant vertex)

2 \mid d(v) ,则称 v 偶点 (Even vertex)

2 \nmid d(v) ,则称 v 奇点 (Odd vertex)。图中奇点的个数是偶数。

d(v) = \left| V \right| - 1 ,则称 v 支配点 (Universal vertex)

对一张图,所有节点的度数的最小值称为 G 最小度 (Minimum degree),记作 \delta (G) ;最大值称为 最大度 (Maximum degree),记作 \Delta (G) 。即: \delta (G) = \min_{v \in G} d(v) \Delta (G) = \max_{v \in G} d(v)

在有向图 G = (V, E) 中,以一个顶点 v 为起点的边的条数称为该顶点的 出度 (Out-degree),记作 d^+(v) 。以一个顶点 v 为终点的边的条数称为该节点的 入度 (In-degree),记作 d^-(v) 。显然 d^+(v)+d^-(v)=d(v)

对于任何有向图 G = (V, E) ,有:

\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = \left| E \right|

若对一张无向图 G = (V, E) ,每个顶点的度数都是一个固定的常数 k ,则称 G k - 正则图 ( k -Regular Graph)

如果给定一个序列 a,可以找到一个图 G,以其为度数列,则称 a 是 可图化 的。

如果给定一个序列 a,可以找到一个简单图 G,以其为度数列,则称 a 是 可简单图化 的。

简单图

自环 (Loop):对 E 中的边 e = (u, v) ,若 u = v ,则 e 被称作一个自环。

重边 (Multiple edge):若 E 中存在两个完全相同的元素(边) e_1, e_2 ,则它们被称作(一组)重边。

简单图 (Simple graph):若一个图中没有自环和重边,它被称为简单图。具有至少两个顶点的简单无向图中一定存在度相同的结点。(鸽巢原理

如果一张图中有自环或重边,则称它为 多重图 (Multigraph)

Warning

在无向图中 (u, v) (v, u) 算一组重边,而在有向图中, u \to v v \to u 不为重边。

Warning

在题目中,如果没有特殊说明,是可以存在自环和重边的,在做题时需特殊考虑。

路径

途径 (Walk):途径是一个将若干个点连接起来的边的集合。形式化地说,途径 w 是一个边的集合 \{e_1, e_2, \ldots, e_k\} ,这个边集需要满足条件:存在一个由点构成的序列 v_0, v_1, \ldots, v_k 满足 e_i 的两个端点分别为 v_{i-1} v_i 。这样的路径可以简写为 v_0 \to v_1 \to v_2 \to \cdots \to v_k 。通常来说,边的数量 k 被称作这条途径的 长度(如果边是带权的,长度通常指路径上的边权之和,题目中也可能另有定义)。

迹 (Trail):对于一条途径 w ,若 e_1, e_2, \ldots, e_k 两两互不相同,则称 w 是一条迹。

路径 (Path)(又称 简单路径 (Simple path)):对于一条迹 w ,若其连接的点的序列中点两两不同,则称 w 是一条路径。

回路 (Circuit):对于一个迹 w ,若 v_0 = v_k ,则称 w 是一个回路。

环/圈 (Cycle)(又称 简单回路/简单环 (Simple circuit)):对于一个回路 w ,若 v_0 = v_k 是点序列中唯一重复出现的点对,则称 w 是一个环。

Warning

关于路径的定义在不同地方可能有所不同,如,“路径”可能指本文中的“途径”,“环”可能指本文中的“回路”。如果在题目中看到类似的词汇,且没有“简单路径”/“非简单路径”(即本文中的“途径”)等特殊说明,最好询问一下具体指什么。

子图

对一张图 G = (V, E) ,若存在另一张图 H = (V', E') 满足 V' \subseteq V E' \subseteq E ,则称 H G 子图 (Subgraph),记作 H \subseteq G

若对 H \subseteq G ,满足 \forall u, v \in V' ,只要 (u, v) \in E ,均有 (u, v) \in E' ,则称 H G 导出子图/诱导子图 (Induced subgraph)

容易发现,一个图的导出子图仅由子图的点集决定,因此点集为 V' ( V' \subseteq V ) 的导出子图称为 V' 导出的子图,记作 G \left[ V' \right]

H \subseteq G 满足 V' = V ,则称 H G 生成子图/支撑子图 (Spanning subgraph)

显然, G 是自身的子图,支撑子图,导出子图;空图是 G 的支撑子图。原图 G 和空图都是 G 的平凡子图。

如果一张无向图 G 的某个生成子图 F k - 正则图,则称 F G 的一个 k - 因子 ( k -Factor)

如果有向图 G = (V, E) 的导出子图 H = G \left[ V^\ast \right] 满足 \forall v \in V^\ast, (v, u) \in E ,有 u \in V^\ast ,则称 H G 的一个 闭合子图 (Closed subgraph)

连通

无向图

对于一张无向图 G = (V, E) ,对于 u, v \in V ,若存在一条途径使得 v_0 = u, v_k = v ,则称 u v 连通的 (Connected)。由定义,任意一个顶点和自身连通,任意一条边的两个端点连通。

若无向图 G = (V, E) ,满足其中任意两个顶点均连通,则称 G 连通图 (Connected graph) G 的这一性质称作 连通性 (Connectivity)

H G 的一个连通子图,且不存在 F 满足 H\subsetneq F \subseteq G F 为连通图,则 H G 的一个 连通块/连通分量 (Connected component)(极大连通子图)。

有向图

对于一张有向图 G = (V, E) ,对于 u, v \in V ,若存在一条途径使得 v_0 = u, v_k = v ,则称 u 可达 v 。由定义,任意一个顶点可达自身,任意一条边的起点可达终点。(无向图中的连通也可以视作双向可达。)

若一张有向图的节点两两互相可达,则称这张图是 强连通的 (Strongly connected)

若一张有向图的边替换为无向边后可以得到一张连通图,则称原来这张有向图是 弱连通的 (Weakly connected)

与连通分量类似,也有 弱连通分量 (Weakly connected component)(极大弱连通子图)和 强连通分量 (Strongly Connected component)(极大强连通子图)。

相关算法请参见 强连通分量

相关算法请参见 割点和桥 以及 双连通分量

在本部分中,有向图的“连通”一般指“强连通”。

对于连通图 G = (V, E) ,若 V'\subseteq V G\left[V\setminus V'\right] (即从 G 中删去 V' 中的点)不是连通图,则 V' 是图 G 的一个 点割集 (Vertex cut/Separating set)。大小为一的点割集又被称作 割点 (Cut vertex)

对于连通图 G = (V, E) 和整数 k ,若 |V|\ge k+1 G 不存在大小为 k-1 的点割集,则称图 G k - 点连通的 ( k -vertex-connected),而使得上式成立的最大的 k 被称作图 G 点连通度 (Vertex connectivity),记作 \kappa(G) 。(对于非完全图,点连通度即为最小点割集的大小,而完全图 K_n 的点连通度为 n-1 。)

对于图 G = (V, E) 以及 u, v\in V 满足 u\ne v u v 不相邻, u 可达 v ,若 V'\subseteq V u, v\notin V' ,且在 G\left[V\setminus V'\right] u v 不连通,则 V' 被称作 u v 的点割集。 u v 的最小点割集的大小被称作 u v 局部点连通度 (Local connectivity),记作 \kappa(u, v)

还可以在边上作类似的定义:

对于连通图 G = (V, E) ,若 E'\subseteq E G' = (V, E\setminus E') (即从 G 中删去 E' 中的边)不是连通图,则 E' 是图 G 的一个 边割集 (Edge cut)。大小为一的边割集又被称作 桥 (Bridge)

对于连通图 G = (V, E) 和整数 k ,若 G 不存在大小为 k-1 的边割集,则称图 G k - 边连通的 ( k -edge-connected),而使得上式成立的最大的 k 被称作图 G 边连通度 (Edge connectivity),记作 \lambda(G) 。(对于任何图,边连通度即为最小边割集的大小。)

对于图 G = (V, E) 以及 u, v\in V 满足 u\ne v u 可达 v ,若 E'\subseteq E ,且在 G'=(V, E\setminus E') u v 不连通,则 E' 被称作 u v 的边割集。 u v 的最小边割集的大小被称作 u v 局部边连通度 (Local edge-connectivity),记作 \lambda(u, v)

点双连通 (Biconnected) 几乎与 2 - 点连通完全一致,除了一条边连接两个点构成的图,它是点双连通的,但不是 2 - 点连通的。换句话说,没有割点的连通图是点双连通的。

边双连通 ( 2 -edge-connected) 2 - 边双连通完全一致。换句话说,没有桥的连通图是边双连通的。

与连通分量类似,也有 点双连通分量 (Biconnected component)(极大点双连通子图)和 边双连通分量 ( 2 -edge-connected component)(极大边双连通子图)。

Whitney 定理:对任意的图 G ,有 \kappa(G)\le \lambda(G)\le \delta(G) 。(不等式中的三项分别为点连通度、边连通度、最小度。)

稀疏图/稠密图

若一张图的边数远小于其点数的平方,那么它是一张 稀疏图 (Sparse graph)

若一张图的边数接近其点数的平方,那么它是一张 稠密图 (Dense graph)

这两个概念并没有严格的定义,一般用于讨论 时间复杂度 O(|V|^2) 的算法与 O(|E|) 的算法的效率差异(在稠密图上这两种算法效率相当,而在稀疏图上 O(|E|) 的算法效率明显更高)。

补图

对于无向简单图 G = (V, E) ,它的 补图 (Complement graph) 指的是这样的一张图:记作 \bar G ,满足 V \left( \bar G \right) = V \left( G \right) ,且对任意节点对 (u, v) (u, v) \in E \left( \bar G \right) 当且仅当 (u, v) \notin E \left( G \right)

反图

对于有向图 G = (V, E) ,它的 反图 (Transpose Graph) 指的是点集不变,每条边反向得到的图,即:若 G 的反图为 G'=(V, E') ,则 E'=\{(v, u)|(u, v)\in E\}

特殊的图

若无向简单图 G 满足任意不同两点间均有边,则称 G 完全图 (Complete graph) n 阶完全图记作 K_n 。若有向图 G 满足任意不同两点间都有两条方向不同的边,则称 G 有向完全图 (Complete digraph)

边集为空的图称为 零图 (Null graph) n 阶零图记作 N_n 。易知, N_n K_n 互为补图。

若有向简单图 G 满足任意不同两点间都有恰好一条边(单向),则称 G 竞赛图 (Tournament graph)

若无向简单图 G = \left( V, E \right) 的所有边恰好构成一个圈,则称 G 环图/圈图 (Cycle graph) n ( n \geq 3 ) 阶圈图记作 C_n 。易知,一张图为圈图的充分必要条件是,它是 2 - 正则连通图。

若无向简单图 G = \left( V, E \right) 满足,存在一个点 v 为支配点,其余点之间没有边相连,则称 G 星图/菊花图 (Star graph) n + 1 ( n \geq 1 ) 阶星图记作 S_n

若无向简单图 G = \left( V, E \right) 满足,存在一个点 v 为支配点,其它点之间构成一个圈,则称 G 轮图 (Wheel Graph) n + 1 ( n \geq 3 ) 阶轮图记作 W_n

若无向简单图 G = \left( V, E \right) 的所有边恰好构成一条简单路径,则称 G 链 (Chain/Path Graph) n 阶的链记作 P_n 。易知,一条链由一个圈图删去一条边而得。

如果一张无向连通图不含环,则称它是一棵 树 (Tree)。相关内容详见 树基础

如果一张无向连通图包含恰好一个环,则称它是一棵 基环树 (Pseudotree)

如果一张有向弱连通图每个点的入度都为 1 ,则称它是一棵 基环外向树

如果一张有向弱连通图每个点的出度都为 1 ,则称它是一棵 基环内向树

多棵树可以组成一个 森林 (Forest),多棵基环树可以组成 基环森林 (Pseudoforest),多棵基环外向树可以组成 基环外向树森林,多棵基环内向树可以组成 基环内向森林 (Functional graph)

如果一张无向连通图的每条边最多在一个环内,则称它是一棵 仙人掌 (Cactus)。多棵仙人掌可以组成 沙漠

如果一张图的点集可以被分为两部分,每一部分的内部都没有连边,那么这张图是一张 二分图 (Bipartite graph)。如果二分图中任何两个不在同一部分的点之间都有连边,那么这张图是一张 完全二分图 (Complete bipartite graph/Biclique),一张两部分分别有 n 个点和 m 个点的完全二分图记作 K_{n, m} 。相关内容详见 二分图

如果一张图可以画在一个平面上,且没有两条边在非端点处相交,那么这张图是一张 平面图 (Planar graph)。一张图的任何子图都不是 K_5 K_{3, 3} 是其为一张平面图的充要条件。对于简单连通平面图 G=(V, E) V\ge 3 |E|\le 3|V|-6

同构

两个图 G H ,如果存在一个双射 f : V(G) \to V(H) ,且满足 (u,v)\in E(G) ,当且仅当 (f(u),f(v))\in E(H) ,则我们称 f G H 的一个 同构 (Isomorphism),且图 G 与图 H 同构的 (Isomorphic),记作 G \cong H

从定义可知,若 G \cong H ,必须满足:

  • |V(G)|=|V(H)|,|E(G)|=|E(H)|
  • G H 结点度的非增序列相同
  • G H 存在同构的导出子图

无向简单图的二元运算

对于无向简单图,我们可以定义如下二元运算:

交 (Intersection):图 G = \left( V_1, E_1 \right), H = \left( V_2, E_2 \right) 的交定义成图 G \cap H = \left( V_1 \cap V_2, E_1 \cap E_2 \right)

容易证明两个无向简单图的交还是无向简单图。

并 (Union):图 G = \left( V_1, E_1 \right), H = \left( V_2, E_2 \right) 的并定义成图 G \cup H = \left( V_1 \cup V_2, E_1 \cup E_2 \right)

和 (Sum)/直和 (Direct sum):对于 G = \left( V_1, E_1 \right), H = \left( V_2, E_2 \right) ,任意构造 H' \cong H 使得 V \left( H' \right) \cap V_1 = \varnothing ( H' 可以等于 H )。此时与 G \cup H' 同构的任何图称为 G H 的和/直和/不交并,记作 G + H G \oplus H

G H 的点集本身不相交,则 G \cup H = G + H

比如,森林可以定义成若干棵树的和。

并与和的区别

可以理解为,“并”会让两张图中“名字相同”的点、边合并,而“和”则不会。

特殊的点集/边集

支配集

对于无向图 G=(V, E) ,若 V'\subseteq V \forall v\in(V\setminus V') 存在边 (u, v)\in E 满足 u\in V' ,则 V' 是图 G 的一个 支配集 (Dominating set)

无向图 G 最小的支配集的大小记作 \gamma(G) 。求一张图的最小支配集是 NP 困难 的。

对于有向图 G=(V, E) ,若 V'\subseteq V \forall v\in(V\setminus V') 存在边 (u, v)\in E 满足 u\in V' ,则 V' 是图 G 的一个 出 - 支配集 (Out-dominating set)。类似地,可以定义有向图的 入 - 支配集 (In-dominating set)

有向图 G 最小的出 - 支配集大小记作 \gamma^+(G) ,最小的入 - 支配集大小记作 \gamma^-(G)

边支配集

对于图 G=(V, E) ,若 E'\subseteq E \forall e\in(E\setminus E') 存在 E' 中的边与其有公共点,则称 E' 是图 G 的一个 边支配集 (Edge dominating set)

求一张图的最小边支配集是 NP 困难 的。

独立集

对于图 G=(V, E) ,若 V'\subseteq V V' 中任意两点都不相邻,则 V' 是图 G 的一个 独立集 (Independent set)

G 最大的独立集的大小记作 \alpha(G) 。求一张图的最大独立集是 NP 困难 的。

匹配

对于图 G=(V, E) ,若 E'\in E E' 中任意两条不同的边都没有公共的端点,且 E' 中任意一条边都不是自环,则 E' 是图 G 的一个 匹配 (Matching),也可以叫作 边独立集 (Independent edge set)。如果一个点是匹配中某条边的一个端点,则称这个点是 被匹配的 (matched)/饱和的 (saturated),否则称这个点是 不被匹配的 (unmatched)

边数最多的匹配被称作一张图的 最大匹配 (Maximum-cardinality matching)。图 G 的最大匹配的大小记作 \nu(G)

如果边带权,那么权重之和最大的匹配被称作一张图的 最大权匹配 (Maximum-weight matching)

如果一个匹配在加入任何一条边后都不再是一个匹配,那么这个匹配是一个 极大匹配 (Maximal matching)。最大的极大匹配就是最大匹配,任何最大匹配都是极大匹配。极大匹配一定是边支配集,但边支配集不一定是匹配。最小极大匹配和最小边支配集大小相等,但最小边支配集不一定是匹配。求最小极大匹配是 NP 困难的。

如果在一个匹配中所有点都是被匹配的,那么这个匹配是一个 完美匹配 (Perfect matching)。如果在一个匹配中只有一个点不被匹配,那么这个匹配是一个 准完美匹配 (Near-perfect matching)

求一张普通图或二分图的匹配或完美匹配个数都是 #P 完全 的。

对于一个匹配 M ,若一条路径以非匹配点为起点,每相邻两条边的其中一条在匹配中而另一条不在匹配中,则这条路径被称作一条 交替路径 (Alternating path);一条在非匹配点终止的交替路径,被称作一条 增广路径 (Augmenting path)

托特定理 n 阶无向图 G 有完美匹配当且仅当对于任意的 V' \subset V(G) p_{\text{奇}}(G-V')\leq |V'| ,其中 p_{\text{奇}} 表示奇数阶连通分支数。

托特定理(推论):任何无桥 3 - 正则图都有完美匹配。

点覆盖

对于图 G=(V, E) ,若 V'\subseteq V \forall e\in E 满足 e 的至少一个端点在 V' 中,则称 V' 是图 G 的一个 点覆盖 (Vertex cover)

点覆盖集必为支配集,但极小点覆盖集不一定是极小支配集。

一个点集是点覆盖的充要条件是其补集是独立集,因此最小点覆盖的补集是最大独立集。求一张图的最小点覆盖是 NP 困难 的。

一张图的任何一个匹配的大小都不超过其任何一个点覆盖的大小。完全二分图 K_{n, m} 的最大匹配和最小点覆盖大小都为 \min(n, m)

边覆盖

对于图 G=(V, E) ,若 E'\subseteq E \forall v\in V 满足 v E' 中的至少一条边相邻,则称 E' 是图 G 的一个 边覆盖 (Edge cover)

最小边覆盖的大小记作 \rho(G) ,可以由最大匹配贪心扩展求得:对于所有非匹配点,将其一条邻边加入最大匹配中,即得到了一个最小边覆盖。

最大匹配也可以由最小边覆盖求得:对于最小边覆盖中每对有公共点的边删去其中一条。

一张图的最小边覆盖的大小加上最大匹配的大小等于图的点数,即 \rho(G)+\nu(G)=|V(G)|

一张图的最大匹配的大小不超过最小边覆盖的大小,即 \nu(G)\le\rho(G) 。特别地,完美匹配一定是一个最小边覆盖,这也是上式取到等号的唯一情况。

一张图的任何一个独立集的大小都不超过其任何一个边覆盖的大小。完全二分图 K_{n, m} 的最大独立集和最小边覆盖大小都为 \max(n, m)

对于图 G=(V, E) ,若 V'\subseteq V V' 中任意两个不同的顶点都相邻,则 V' 是图 G 的一个 团 (Clique)。团的导出子图是完全图。

如果一个团在加入任何一个顶点后都不再是一个团,则这个团是一个 极大团 (Maximal clique)

一张图的最大团的大小记作 \omega(G) ,最大团的大小等于其补图最大独立集的大小,即 \omega(G)=\alpha(\bar{G}) 。求一张图的最大团是 NP 困难 的。

参考资料

OI 中转站 - 图论概念梳理

Wikipedia(以及相关概念的对应词条)

离散数学(修订版),田文成 周禄新 编著,天津文学出版社,P184-187

戴一奇,胡冠章,陈卫。图论与代数结构[M]. 北京:清华大学出版社,1995.


评论